
Hémoglobinopathies

1 Méthodes d'analyse de l'hémoglobine

Le sang veineux est prélevé sur EDTA puis les hématies sont lavées et lysées. Puis analysées :

- > Par électrophorèse sur acétate de cellulose ou agarose en milieu alcalin à ph 8,6.
- > Par électrophorèse sur agarose en milieu acide ph 6,2 (sépare les différentes Hb).
- Par isofocalisation électrique (surtout pour l'Hb des nouveaux nés car plus sensible).
- Par le test d'Itano (test de solubilité de l'Hb S).
- > Par dosage spectrophotométrique.
- Par dosage sur HPLC.

Hb	Chaine	Adulte
А	α2β2	97-99%
A2	α2δ2	< 3,5%
F	α2γ2	< 1%
Н	β4	-
Bart's	γ4	-

	Hb	Hb	dH
Globines / Hb	Embryonnaires	Foetales	Adultes
Groupe β	g	γ	δ et β
Groupe α		(Gy et Ay)	
	ζ2 ε2	ζ2 γ2	
ζ	Gower₁*	Hb Portland	
	α2 ε2	α2 γ2	α2 δ2 Hb A2
α	Gower ₂	Hb F*	α2 β2 Hb A*
Associations	ε4 (?)	γ4	β4
aN° (déficit α)	Hb Gower₁	Hb Bart's	Hb H

2 Les Thalassémies (Anomalies quantitatives)

- > Hémoglobinopathie corpusculaire et constitutionnelle, autosomique récessive
- > Défaut de synthèse quantitatif d'une chaine de la globine :

- Anomalie de la chaine α : α -thalassémie

- Anomalie de la chaine β : β -thalassémie

- Entraine un excès de la chaine complémentaire
- > Hétérozygote ou homozygote

2.1 Les β Thalassémies

2.1.1 Physiopathologie

- \triangleright Excès relatif de chaine α :
 - Favorise l'apoptose des érythroblastes
 - Erythropoïèse inefficace → Erythropiese extra médullaire : Hépato/splénomégalie
 - Hémolyse extra-vasculaire / Macrophage / rate
 - Hyperplasie erythroblastique secondaire → Malformation du squelette
- \triangleright Déficit en chaine de chaine β = augmentation des chaines β like :

Hb F : α2γ2
Hb A2 : α2δ2

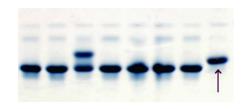
2.1.2 Transmission / epidémiologie

- **2** gènes β / mutations ponctuelles :
 - Homozygotes:
 - β^0 si pas de chaine β produite
 - β+ si synthèse résiduelle de chaine β
 - o <u>Hétérozygotes</u>:
 - Asymtomatiques, transmetteurs
- Fréquente sur le pourtour méditérannéen (Italie, grèce, France, magreb)
- Un peu moins en thaïlande, moyen orient, afrique et antilles.

Hb	Chaine	Adulte sain	β majeure HOMO	β intermédiaire HOMO	β mineure HETERO	β minime HETERO
Α	α2 <mark>β</mark> 2	97-99%	0% dans les $β^0$ 5-45% dans les $β^+$			
A2	α2δ2	< 3,5%	> 3,5%	> 3,5%	> 3,5%	> 3,5%
F	α2γ2	< 1%	50 à 95%	>1%	>1%	<1%
Н	β4	-	-	-	-	-
Bart's	γ4	-	-	-	-	-

2.1.3 Diagnostic positif

β Thalassémie homozygote majeure = Maladie de COOLEY


- Clinique :
 - Syndrome anémique dès la naissance
 - Hépato/splénomégalie (due à erythropoièse extra-médullaire suite à l'hémolyse intra médullaire)
 - Sub-ictère
 - Faciès mongoloïde (hyperplasie des os plats), visible à la radio

o *NFS:*

- Anémie sévère (4 à 7!), intensément microcytaire et hypochrome, peu régénératif (AMHA)
- Frottis: dysérythropoïèse: anisocytose, poïkilocytose, , microcyte, annulocytose, érythroblastes circulants, GR

o <u>Electrophorèse de l'Hb :</u>

- Hb A : Absente dans les β^{0} , 5 à 45% dans les β^{+}
- Hb F: 50 à 95 %
- Hb A2 : normale à augmentée (> 3,5%)

o Autres:

- Bilirubine libre légèrement augmentée = hémolyse chronique
- Ferritinémie et sidérémie elévé = lié à la dysérythropoièse
- Résistance globulaire osmotique

β Thalassémie homozygote intermédiaire

- 10% des formes homozygotes, forme COOLEY atténuée,
- Hb entre 7 et 9 g/dL
- Hb F augmentée

β Thalassémie hétérozygote = thalassémie mineure :

- Anémie très diminuée > 9, microcytaire, hypochrome (AMHA)
- O Hb A2 > 3,5%, Hb F > 1%

β Thalassémie hétérozygote = thalassémie minime :

- Porteur inapparent, pas d'anémie
- Pseudo polyglobulie hypochrome microcytaire
- HbA2 > 3,5%, Hb F normale

2.1.3 Ttt et pronostic

Maladie de COOLEY :

- Transfusion isogroupes phénotypes (maintenir > 10g)
- o Ttt chélateur du fer (DESFERAL®)
- o Vaccination + Splénectomie (si transfusions inefficaces) + ORACILLINE au long cours
- o Greffe de MO allogénique
- o Pronostic sévère
- o Majoration de l'hépato/splénomégalie
- Insuffisance endocrinienne, cardiaque, mort.
- o Si prise en charge de l'anémie, ils peuvent atteindre l'âge adulte, amsi hémosidérose IIr

NB : biospie des villosités choriale à 10 SA si risque de thal majeure

> Autres β-thalassémies : ne nécessite pas de ttt médical

2.2 Les α Thalassémies

2.1.1 Physiopathologie

- \triangleright Excés relatif de chaine non α :
 - Précipitation dans les GR circulants
 - Hémolyse prématurée, splénique
 - Formes sévères : révélations néonatale
 - Formations de tétramères :
 - γ4 : Hb de Bart
 - o β4 : Hb H

2.1.2 Transmission / epidémiologie

- > Fréquent dans le Sud-est asiatique, puis afrique, moyen orient
- > Superposable au plasmodium
- \triangleright Délétion des 4 gènes α (--/--)
 - Anarsaque foeto-placentaire, mort fœtale in utero, anémie sévère < 60g/l, macrocytose et présence de l'Hb de Bart γ4 80-90%.
- Délétion de 3 gènes (--/-a) :
 - **Hémoglobinose H**, on a une anémie chronique hémolytique 70-90 g/l et présence de corps de heinz, splénomégalie, surinfection.

On a 30 % d' Hb de Bart y4.

- Délétion de 2 gènes (- a / -a) ou (--/aa)
 - α Thalassémie mineure : asymtomatique, microcytose sans anémie et 10-15% d' Hb de Bart γ4.
- Délétion d'un gène (- a / aa)
 - tout est normal, on a 0-2% d' Hb de Bart γ4.

2.1.3 Diagnostic positif

- α <u>Thalassémie majeure :</u>
 - Anasarque foeto-placentaire, létal
 - Anémie macrocytaire sévère
 - o Isoélectrofocalisation de l'Hb :
 - 0% d'Hb A
 - 0% d'Hb F
 - 80% d'Hb Bart's
 - 10 % d'Hb H
 - Présence d'Hb embryon et Portland
- Hémoglobinose H :
 - o Clinique d'anémie hémolytique (β Thalassémie homozygote intermédiaire)
 - o AMHR
 - o GR à corps de Heinz (précipité d'Hb H)
 - Isoelectrofocalisation de l'Hb :
 - 70% Hb A.
 - 10 à 30% de H
 - Traces d'Hb Bart's

> α Thalassémie mineure type 1

o Asymtomatique

Microcytose sans anémie, ou pseudo polyglobulie microcytaire et hypochrome
Naissance : 5% d'Hb Bart's

o Adulte Hb normale : parfois HbA2 < 2,5%

α Thalassémie mineure type 2 (silencieuse) o Asymtomatique

Naissance : 2% d'Hb Bart'sAdulte biologie normale

Hb	Chaine	Adulte sain	α majeure	Hemoglobinose H	α mineure	α minime
Α	α2β2	97-99%	0%	70%	N	N
A2	<mark>α</mark> 2δ2	< 3,5%	0%	> 3,5%	< 2,5%	N
F	<mark>α</mark> 2γ2	< 1%	0%	10 à 30%	N	N
Н	β4	-	10%	-	-	-
Bart's	γ4	-	80%	Traces	_	_

3 Drépanocytose (Anomalie qualitative)

- → Hémoglobinopathie corpusculaire constitutionnelle autosomique récessive
- \rightarrow Due à la mutation de GLU en 6 de la chaine β de la globine en VAL. L'hémoglobine résultante est l'Hb S qui à la propriété de se polymériser et de transformer le GR en forme de faucille (= Drépanocyte) lorsqu'il y a hypoxie, acidose ou déshydratation.

3.1 Physiopathologie

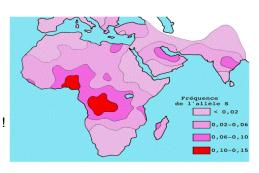
- → Hypoxie, désydratation, acidose, inflammation → Polymérisation de l'Hb S (si > 30% d'Hb S)
 - o Phénomène inhibé par l'Hb F (si + de 20%) et A2
- ➤ Déformation du GR en faucille = falciformation → Perte de la déformabilité
 - Hémolyse prématurée
 - Majoration viscosité sanguine : occlusions micro-vasculaires
 - Favorisée par ponts moléculaires VLA-4 GR / VCAM-1 CEV, et CD36 GR / thrombospondine / CD36 CEV.
 - Micro-infarctus
 - o Crises cliniques de « vaso-occlusion »: os, rate, rein, cerveau, rétine, poumons,...
 - o Douleurs+++; surinfections

3.2 Epidémiologie / Transmission

- Distribution géographique :
 - o Surtt chez les noirs → 1/65 naissances
 - o /Afrique, Amérique, antilles
 - France = 1/4500 naissances = 1^{er} risque génétique!

Transmission :

- o Homozygote S/S
- Hétérozygote A/S
- o Double hétérozygotes ou hétérozygotes composites S/C , S/ βThal


3.3 Diagnostic positif

Formes homozygote:

- Clinique :
 - Ethnie exposée
 - Néonatal: asymptomatique
 - Diagnostic à 6 mois 1 an (quand HbS remplace HbF...)
 - Syndrome anémique chronique (souvent assez bien toléré)
 - Association initiale subictère grosse rate (HL extra-vasculaire)

Selon l'âge

- Premières années: pronostic vital
 - o Triade **Hémolyse + complications Thrombotiques + Infections**
- Jusqu'à l'adolescence:
 - Crises douloureuses paroxystiques vaso-occlusives
- Adulte:

 Hémolyse chronique + exacerbations selon facteurs favorisants + complications dégénératives

Complications aiguës

Crises douloureuses :

- Manifestation la plus fréquente; = ischémie
- Spontanées
- o Déclenchées (effort, stress, fièvre, hypoxie, déshydratation)
- Avant 3 ans: petits os mains, pieds (syndrome pied mains)
- o Surtout entre 5 et 20 ans
- o Os: membres, thorax, rachis.
- Abdomen: infarctus splénique (disparition grosse rate), mésentérique, rénal
- Infections (Immunodépression due à l'asplénisme via infarctus répétés)
 - Hyposplénie acquise favorisante
 - o Pneumopathie, méningite, septicémie, ostéomyélite
 - Pneumocoque, salmonelles

Poussées anémiques aigues

- o Carence ajoutée en fer, folates
- Erythroblastopénie transitoire: parvovirus B19
- Séquestration splénique aigue

Accidents vaso-occlusifs (AVO)

- o AVC: 5 à 15%
- o Priapisme, rétine,...
- · Syndrome douloureux thoracique aigu
- 25 à 40% des patients; décès 20%
- Infection + EP + vaso-occlusion

Complications chroniques

- Insuffisance rénale par nécrose papillaire rénale
- Insuffisance cardiaque
- Insuffisance respiratoire
- Ostéonécrose aseptique fémorale ou humérale, déformations osseuses, ulcérations maléolaires cutanées
- Lithiases biliaires
- Démence par répétition des AVC, <u>+</u> symptomatiques
- Hémochromatose secondaire

NFS

- Anémie chronique +/- sévère (70 à 90 g/L) type ANNR
- <u>Frottis érythrocytaire :</u>
 - Erythroblastose, poïkilocytose
 - Quelques drépanocytes spontanés
 - Corps de Joly (hyposplénisme acquis)
- Test de falciformation entre lame et lamelle : test d'EMMEL +
- Svt petite hyperleucocytose 15 20 G/L, voire petite myélémie si crise osseuses

o <u>Electrophorèse de l'Hb :</u>

- Absence Hb A
- Hb A2: 2 à 4%; dosage spécifique
- Hb F: 1 à 15%; dosage spécifique
- Hb S: 75 à 90 %

- Autres :
 - Iso-électro-folalisation
 - HPLC

Formes hétérozygote :

- Clinique
 - Habituellement asymptomatiques
 - Infarctus spléniques ou douleurs osseuses possibles si hypoxie sévère
- o <u>NFS:</u>
 - Hémogramme normal, pas de drépanocyte circulant
 - Falciformation provoquée positive
- o <u>Electrophorèse de l'Hb :</u>
 - Hb A: 55 à 60%
 - Hb A2: 2 à 3%
 - Hb S: 40 à 45%

> Formes hétérozygote composite (induisent des syndromes majeurs)

- S/βthal:
 - Formes les + sévères : Italie du Sud, Grece
 - Noirs : Symptomatologie plus atténuée
 - Mycrocytose hypochrome
 - Drépanocytes rares au frottis
 - Electrophorèse de l'Hb :
 - HbS prédomine
 - Hb A absente ou 10 à 30 %selon b0 ou b+
 - HbA2 majorée (4-6%)
 - Hb F 5 à 15%)
- o S/C :
 - Symptomatologie plus modérée, complications moins fréquentes
 - Rétinopathie plus fréquente
 - Frottis: GR cibles
 - Electrophorèse Hb:
 - Hb S et Hb C en quantités égales
 - Hb F 2 à 6%

3.4 Traitement des homozygotes :

Ttt généraux et prévention des accidents vaso-occlusifs :

- Hospitalisation
- Lutter contre hypoxie et déshydratation (réhydratation)
- Vaccinations !!!
 - pneumocoque, méningocoque, hémophilus influenzae
- Pénicilline orale lors des 5 premières années
- Traiter rapidement toute infection, toute fièvre
 - Antibiothérapie bactéricide à large spectre
 - Après les hémocultures

> Ttt de la crise douloureuse (en ambulatoire ou hospitalisation) :

- Antalgique + AINS
- o Souvent: morphine IV seringue électrique
- o Hydratation
- o Contrôle du pH sanguin
 - Acidose: favorisante
- o Oxygénothérapie

> Transfusions:

- Transfusion isolée
 - Traitement chronique de l'anémie
 - Déleucocyté, isogroupe, phénotypé,...
- Transfusion prolongée
 - Maintenir Hb S à moins de 30% par dilution
 - Prévention de récidive d'AVC, grossesse
- Exanguino-transfusion partielle (Urgence)
 - accident vaso-occlusif grave, syndrome thoracique aigu
 - Obtenir Hb S < 30%
- + Acide folique

Hydroxyurée (Hydréa ®)

- Majore taux d'HbF et % de GR contenant HbF
- o En 1ere intention si > 3 crises vaso-occlusive / an
- Posologie progressive
- o Jusqu'à limite de toxicité hématologique
- o En cas de crise douloureuses fréquentes
- Prévention des rechutes AVC

Greffe de moelle :

- o Allo-greffe
- o Enfants ayant une forme sévère, avec donneur apparenté HLA identique

> Thérapie à venir :

- o Thérapie génique
- o Réactivateurs de la synthèse de l'Hb F → 5 Azédoxycytidine
- o Inhibiteur de la déshydratation érythrocytaire (Mg)
- o NO et vasodilatateurs
- > NB : Espérance de vie = 65 ans